|
EqWorld
The World of Mathematical Equations |
|
Exact Solutions >
Functional Equations >
Nonlinear Functional Equations with One Independent Variable
PDF version of this page
2. Nonlinear Functional Equations with One Independent Variable
2.1. Functional Equations with Quadratic Nonlinearity
-
y(x + 1) − ay2(x) = f(x).
-
y(2x) − ay2(x) = 0.
-
y(2x) − 2y2(x) + a = 0.
-
y(x)y(a − x) = b2.
-
y(x)y(a − x) = f 2(x).
-
y2(x) + y2(a − x) = b2.
-
y2(x) + Ay(x)y(a − x) + By2(a − x) + Cy(x) + Dy(a − x) = f(x).
-
y(x)y(ax) = f(x).
-
y(x2) − ay2(x) = 0.
-
y(x)y(xa) = f(x).
-
y(x)y(a/x) = b2.
-
y(x)y(a/x) = f 2(x).
-
y2(x) + Ay(x)y(a/x) + By2(a/x) + Cy(x) + Dy(a/x) = f(x).
-
y(x)y((a − x)/(1 + bx)) = A2.
-
y(x)y((a − x)/(1 + bx)) = f 2(x).
-
y2(x) + Ay(x)y((a − x)/(1 + bx)) + By(x) = f(x).
-
y(x)y((a2 − x2)1/2) = b2.
-
y(x)y((a2 − x2)1/2) = f 2(x).
-
y(sin x)y(cos x) = a2.
-
y(sin x)y(cos x) = f 2(x).
-
y(x)y(ω(x)) = b2,
where ω(ω(x)) = x.
-
y(x)y(ω(x)) = f 2(x),
where ω(ω(x)) = x.
2.2. Functional Equations with Power − Law Nonlinearity
-
y(x + a) − byλ(x) = f(x).
-
yλ(x)y(a − x) = f(x).
-
y2n + 1(x) + y2n + 1(a − x) = b, n = 1, 2, ...
-
yλ(x)y(a/x) = f(x).
-
yλ(x)y((a − x)/(1 + bx)) = f(x).
-
yλ(x)y((ax − β)/(x + b)) = f(x), β = a2 + ab + b2.
-
yλ(x)y((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
yλ(x)y(xa) = f(x).
-
yλ(x)y((a2 − x2)1/2) = f(x).
-
yλ(sin x)y(cos x) = f(x).
2.3. Nonlinear Functional Equations of General Form
-
F(x, y(x), y(x + a)) = 0.
-
F(x, y(x), y(a − x)) = 0.
-
F(x, y(x), y(ax)) = 0.
-
F(x, y(x), y(a/x)) = 0.
-
F(x, y(x), y((a − x)/(1 + bx))) = 0.
-
F(x, y(x), y((ax − β)/(x + b))) = 0, β = a2 + ab + b2.
-
F(x, y(x), y((bx + β)/(a − x))) = 0, β = a2 + ab + b2.
-
F(x, y(x), y(xa)) = 0.
-
F(x, y(x), y((a2 − x2)1/2)) = 0.
-
F(x, y(sin x), y(cos x)) = 0.
-
F(x, y(x), y(ω(x))) = 0, where ω(ω(x)) = x.
-
F(x, y(x), y(x + 1), y(x + 2)) = 0.
-
F(x, y(x), y((ax − β)/(x + b)), y((bx + β)/(a − x))) = 0, β = a2 + ab + b2.
-
F(x, y(x), y(x + 1), ..., y(x + n)) = 0.
-
F(x, y(x), y[2](x), ..., y[n](x)) = 0,
y[n](x) = y(y[n − 1](x)).
-
F(x, y(θ1(x)), y(θ2(x)), ..., y(θn(x))) = 0.
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|