MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
11 1. Ordinary Differential Equations
1.7. Nonlinear Systems of Three and More Equations
\noindent
$\displaystyle y'_i=f_i(t,y_1,\dots,y_n),\qquad i=1,\dots,n$. Yurii Kosovtsov
Submitted: 10 Dec 06 12:32
Edited (author): 15 Dec 06 09:34
Edited (admin): 12 Dec 06 19:41
Details
Edit
12 2. First-Order Partial Differential Equations
2.1. Linear Equations
\begin{equation} 
\label{1}
{\rm div}{\mathbf U}=-\frac{q}{4\pi}\,{\delta (r)} \hfill \break 
\end{equation}  
where $\mathbf r=\{x,y,z\},$ \space $ r=\sqrt {x^2+y^2+z^2}$. Bounary condion is $ {\mathbf U \rightarrow    0}  $ when 
$ r \rightarrow \infty $. $ Alexander Ivanchin
Submitted: 08 Mar 09 07:30
Details
Edit
13 2. First-Order Partial Differential Equations
2.1. Linear Equations
$\displaystyle \frac{\partial w}{\partial t}+y\frac{\partial
w}{\partial x}+ f(t)\frac{\partial w}{\partial y}=0$.\hfill\break Igor Sergeev
Submitted: 08 Feb 10 15:11
Edited (admin): 09 Feb 10 16:50
Details
Edit
14 2. First-Order Partial Differential Equations
2.1. Linear Equations
$\displaystyle 
x_2 \frac{\partial u}{\partial x_1}+
2 x_3 \frac{\partial u}{\partial x_2}+
3 x_4 \frac{\partial u}{\partial x_3}+
\frac{1}{6} (30 x_4 x_1+20 x_3 x_2+10 x_2 x_1^3-20 x_3 x_1^2-15 x_2^2 x_1-x_1^5) 
\frac{\partial u}{\partial x_4}=0
$\hfill\break Vladimir Kirichenko
Submitted: 18 Dec 09 17:46
Edited (admin): 01 Sep 13 10:22
Details
Edit
15 2. First-Order Partial Differential Equations
2.3. Nonlinear Equations
\noindent
$\displaystyle f_1(x,y,z)\frac{\partial w}{\partial x}+
f_2(x,y,z)\frac{\partial w}{\partial y}
+f_3(x,y,z)\frac{\partial w}{\partial z}+\sqrt{
\Bigl(\frac{\partial w}{\partial x}\Bigr)^{\!2}+
\Bigl(\frac{\partial w}{\partial y}\Bigr)^{\!2}+
\Bigl(\frac{\partial w}{\partial z}\Bigr)^{\!2}}=1$. Alexei Zhurov
Submitted: 17 Dec 06 06:13
Edited (admin): 18 Dec 06 11:45
Details
Edit
16 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t}-\dfrac{1}{2}\frac{\partial^2 w}{\partial x^2}=0$. Nikolay Sukhomlin
Submitted: 16 Jun 08 16:52
Edited (admin): 23 Jun 08 15:21
Details
Edit
17 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t}+ax^2\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 18 May 08 18:44
Edited (admin): 25 Jun 08 12:09
Details
Edit
18 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle  a\frac{\partial w}{\partial t}+x^3\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 18 May 08 20:39
Edited (admin): 25 Jun 08 12:15
Details
Edit
19 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a^2t \frac{\partial w}{\partial t}-\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 18 May 08 07:01
Edited (admin): 25 Jun 08 12:28
Details
Edit
20 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a^2t \frac{\partial w}{\partial t}+\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 18 May 08 06:57
Edited (author): 23 Feb 09 13:45
Edited (admin): 25 Jun 08 12:28
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin