MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
21 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a\frac{\partial w}{\partial t}+\frac{\partial^2w}{\partial x^2}+b\frac{\partial ^2w}{\partial y^2}+c^2w=0$. Valeriy Stepuchev
Submitted: 24 May 08 20:00
Edited (author): 12 Sep 10 19:45
Edited (admin): 27 Jun 08 10:53
Details
Edit
22 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a\frac{\partial w}{\partial t}+\frac{\partial^2w}{\partial x^2}+b\frac{\partial ^2w}{\partial y^2}-c^2w=0$. Valeriy Stepuchev
Submitted: 24 May 08 20:07
Edited (author): 12 Sep 10 19:50
Edited (admin): 27 Jun 08 10:58
Details
Edit
23 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a\frac{\partial w}{\partial t}+\frac{\partial^2w}{\partial x^2}+c^2w=0$. Valeriy Stepuchev
Submitted: 24 May 08 19:34
Edited (author): 12 Sep 10 19:54
Edited (admin): 27 Jun 08 11:22
Details
Edit
24 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a\frac{\partial w}{\partial t}+\frac{\partial^2w}{\partial x^2}-c^2w=0$. Valeriy Stepuchev
Submitted: 24 May 08 19:28
Edited (author): 12 Sep 10 19:57
Edited (admin): 27 Jun 08 11:21
Details
Edit
25 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle a\frac{\partial w}{\partial t}+x\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 18 May 08 18:29
Edited (author): 26 Sep 11 19:49
Edited (admin): 25 Jun 08 12:06
Details
Edit
26 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle x^a\frac{\partial w}{\partial t}+b\frac{\partial^2w}{\partial x^2}=0$. Valeriy Stepuchev
Submitted: 29 Apr 08 19:48
Edited (author): 05 Oct 15 19:42
Edited (admin): 26 Jun 08 11:10
Details
Edit
27 3. Linear Partial Differential Equations
3.1. Second-Order Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t}=a\frac{\partial^2w}{\partial
x^2}+\frac bx \frac{\partial w}{\partial x}$. Valeriy Stepuchev
Submitted: 05 Jul 08 11:18
Edited (author): 07 Oct 15 18:41
Edited (admin): 07 Jul 08 14:03
Details
Edit
28 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=b\frac{\partial ^2w}{\partial x^2}-c^2w
$. Valeriy Germanovich Stepuchev
Submitted: 16 Mar 08 12:39
Edited (author): 21 Apr 08 16:16
Edited (admin): 21 Mar 08 13:13
Details
Edit
29 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial x^2}+b\frac{\partial ^2w}{\partial y^2}$. Valeriy Stepuchev
Submitted: 20 May 08 20:43
Edited (admin): 27 Jun 08 11:05
Details
Edit
30 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial x^2}+b\frac{\partial ^2w}{\partial y^2}+c^2w$. Valeriy Stepuchev
Submitted: 21 May 08 18:52
Edited (admin): 27 Jun 08 11:10
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin