MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
81 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t} =
\frac{1}{r^n}\frac{\partial}{\partial
r}\left(r^n aw^m\frac{\partial w}{\partial r}\right) +
bw^{1-m}$. Elena Andreevna Vyazmina
Submitted: 21 Dec 06 13:34
Edited (admin): 23 Mar 07 11:08
Details
Edit
82 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t}=\frac12\frac{\partial^2w}{\partial x^2}+w^2(1-w)$. Konstantin Alexandrovich Volosov
Submitted: 18 Sep 07 11:50
Edited (admin): 21 Sep 07 07:10
Details
Edit
83 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$$
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)\left(\alpha w^2 +\beta w +
\gamma\right)\frac{\partial {w}}{\partial x}\right] + b\theta(t).
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:29
Edited (admin): 28 Jan 08 16:44
Details
Edit
84 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)\left(\alpha w^{1-k}+\beta w^{2-2k} +\gamma
w^{-k}\right)\frac{\partial {w}}{\partial x}\right] +
aw^{k}\theta(t).
$ Elena Vyazmina
Submitted: 25 Jan 08 12:32
Edited (admin): 28 Jan 08 16:47
Details
Edit
85 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)\left(\alpha w +\beta e^{\lambda w} +\gamma
e^{-\lambda w}\right)\frac{\partial {w}}{\partial x}\right] +
ae^{\lambda w}\theta(t)$. Elena Vyazmina
Submitted: 25 Jan 08 12:33
Edited (admin): 28 Jan 08 16:49
Details
Edit
86 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)f({w})\frac{\partial {w}}{\partial x}\right] +
g(w)\theta(t).
$ Elena Vyazmina
Submitted: 25 Jan 08 12:28
Edited (admin): 28 Jan 08 17:01
Details
Edit
87 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$$
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)\left(\frac{\alpha w}{aw+b} +\beta
\frac{\ln{\left|aw+b\right|}-1}{aw+b} + \frac{
\gamma}{aw+b}\right)\frac{\partial {w}}{\partial x}\right] +
(aw+b)\theta(t).
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:30
Edited (admin): 29 Jan 08 14:33
Details
Edit
88 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$$
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[\chi(t)\left(\frac{\alpha w+\gamma}{(aw+b)^2}
+\frac{\beta}{(aw+b)^2} \ln{\left|aw+b\right|} \right)\frac{\partial {w}}{\partial x}\right] +
(aw+b)^2\theta(t).
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:31
Edited (admin): 29 Jan 08 14:37
Details
Edit
89 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$$
\frac{\partial {w}}{\partial t} = b\frac{\partial}{\partial
x}\left\{\exp{\left[\lambda
k^2(nk+k+2)w}\right]\left( \frac{\partial {w}}{\partial
x}\right)^n\right\} + ae^{-\lambda w},\quad \ k=\frac{n+1}n.
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:34
Edited (admin): 29 Jan 08 14:42
Details
Edit
90 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$$
\frac{\partial {w}}{\partial t} = \frac{\partial}{\partial
x}\left[f({w})\left( \frac{\partial {w}}{\partial
x}\right)^n\right] + g(w).
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:34
Edited (admin): 29 Jan 08 15:23
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin