MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
91 4. Nonlinear Partial Differential Equations
4.1. Second-Order Quasilinear Parabolic Equations
$\displaystyle \frac{\partial w}{\partial t}+w\frac{\partial w}{\partial x}-
a\frac{\partial^2 w}{\partial x^2}=-f(x,t)$.\quad \ The generalized Burgers equation. Andrei Polyanin
Submitted: 25 Feb 09 13:31
Details
Edit
92 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \left(\frac{\partial w}{\partial x}\right)^{\!2}\frac{\partial^2 w}{\partial t^2}=
\left(\frac{\partial w}{\partial t}\right)^{\!2}\frac{\partial^2 w}{\partial x^2}+
f(w)\left(\frac{\partial w}{\partial x}\right)^{\!4}$. Andrei Polyanin
Submitted: 07 Dec 06 09:08
Edited (admin): 11 Dec 06 10:50
Details
Edit
93 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2 w}{\partial x\partial y}=\frac{\partial w}{\partial x}f\left(\frac{\partial w}{\partial x}+aw\right)$. Andrei Polyanin
Submitted: 07 Dec 06 09:21
Edited (admin): 11 Dec 06 10:56
Details
Edit
94 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2 w}{\partial t\partial x}=
\frac{a}{w}\left(\frac{\partial w}{\partial x}\right)^{\!2}+\frac 1w\frac{\partial w}{\partial t}\frac{\partial w}{\partial x}
+\left(b+\frac{c}{w}\right)\frac{\partial w}{\partial x}+
\frac{c}{2aw}\frac{\partial w}{\partial t}+\frac{(bw+c)^2}{4aw}$. Yurii Kosovtsov
Submitted: 11 Dec 06 10:33
Edited (admin): 11 Dec 06 15:31
Details
Edit
95 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle 
\frac{\partial^2 w}{\partial x\partial t}-\left(\frac{1}{w}\frac{\partial w}{\partial t}+b\right)
\frac{\partial w}{\partial x}-\frac{c}{w}\frac{\partial w}{\partial t}-
aw^2\left(c+kw+\frac{\partial w}{\partial x}\right)^{\!-1}-sw-b c = 0$. Yurii Kosovtsov
Submitted: 11 Dec 06 11:44
Edited (admin): 12 Dec 06 10:03
Details
Edit
96 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \left( \frac{\partial^2 w}{\partial t \, \partial x} \right)^2 = \left( \frac{\partial w}{\partial x} \right)^2 \frac{\partial w}{\partial t}$ Yurii Kosovtsov
Submitted: 12 Dec 06 11:03
Edited (author): 13 Dec 06 08:36
Edited (admin): 12 Dec 06 12:30
Details
Edit
97 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2w}{\partial t^2}=\frac{\partial}{\partial x}\left[f(w)\frac{\partial w}{\partial x}\right]$. Andrei Polyanin
Submitted: 13 Dec 06 09:52
Details
Edit
98 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2w}{\partial t^2}=
\frac{\partial}{\partial x}\left[f(w)\frac{\partial w}{\partial x}\right]+
\frac{\partial}{\partial y}\left[g(w)\frac{\partial w}{\partial y}\right]$. Andrei Polyanin
Submitted: 13 Dec 06 09:57
Details
Edit
99 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2w}{\partial t^2}=
\sum^n_{k=1}\frac{\partial}{\partial x_k}\left[f_k(w)\frac{\partial w}{\partial x_k}\right]$. Andrei Polyanin
Submitted: 13 Dec 06 10:00
Details
Edit
100 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial^2 w}{\partial t\partial x}
-\frac 1w\frac{\partial w}{\partial t}\frac{\partial w}{\partial x}-\frac{c}{w}\frac{\partial w}{\partial t}-k w= 0$.
%where $c$ and $k$ are constants. Yurii Kosovtsov
Submitted: 11 Dec 06 10:23
Edited (admin): 13 Dec 06 10:09
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin