MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
231 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial^2 w}{\partial x^2} = \cfrac{\beta}{y}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial y^2}$. Elena Vyazmina
Submitted: 25 Jan 08 12:41
Edited (admin): 28 Jan 08 16:16
Details
Edit
232 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial^2 w}{\partial x^2}=
\left( {\alpha y + \beta } \right)^\gamma \frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial y^2},
\qquad \gamma\ne1$. Elena Vyazmina
Submitted: 25 Jan 08 12:40
Edited (admin): 28 Jan 08 16:20
Details
Edit
233 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial^2 w}{\partial x^2}= -\alpha e^{\lambda y}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial y^2}.
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:38
Edited (admin): 28 Jan 08 16:23
Details
Edit
234 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial^2 w}{\partial x^2}=
(ay+b)^3\ln{\left|ay+b\right|}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial y^2}$. Elena Vyazmina
Submitted: 25 Jan 08 12:43
Edited (admin): 28 Jan 08 16:26
Details
Edit
235 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial^2 w}{\partial x^2} = f(y)\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial y^2}.
$ Elena Vyazmina
Submitted: 25 Jan 08 12:37
Edited (admin): 28 Jan 08 16:32
Details
Edit
236 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$\displaystyle
\frac{\partial w}{\partial t} = a
\biggl(\frac{\partial w}{\partial x}\biggr)^m \frac{\partial^2 w}{\partial x^2}.
$ Elena Vyazmina
Submitted: 25 Jan 08 12:44
Edited (admin): 28 Jan 08 16:38
Details
Edit
237 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$$
\frac{\partial^2w}{\partial x^2}  = -\alpha \frac{\partial w}{\partial y}\frac{\partial^2w}{\partial y^2}.
$$ Elena Vyazmina
Submitted: 25 Jan 08 12:39
Edited (admin): 29 Jan 08 15:36
Details
Edit
238 4. Nonlinear Partial Differential Equations
4.4. Other Second-Order Equations
$$
\frac{\partial {w}}{\partial t} = A\frac{\partial}{\partial
x}\left\{ {w}^{\frac{(n+1)^2-\lambda(n+n^2)-2n^2}
{n^2(n+1)}}\left(\frac{\partial {w}}{\partial x}\right)^n\right\} + 
B {w}^{\lambda}.
$$ Elena Andreevna Vyazmina
Submitted: 25 Jan 08 12:36
Edited (author): 12 Apr 08 14:49
Edited (admin): 21 Apr 08 08:58
Details
Edit
239 4. Nonlinear Partial Differential Equations
4.5. Third-Order Equations
\noindent
$\displaystyle \frac{\partial w}{\partial t}+aw^k\frac{\partial w}{\partial x}-
b\frac{\partial^3 w}{\partial t^3}=0$. Andrei Polyanin
Submitted: 08 Dec 06 12:42
Edited (author): 08 Dec 06 13:12
Edited (admin): 11 Dec 06 11:04
Details
Edit
240 4. Nonlinear Partial Differential Equations
4.5. Third-Order Equations
\noindent
$\displaystyle \frac{\partial w}{\partial t}=
a\frac{\partial^3 w}{\partial x^3}+(b\ln w+c)\frac{\partial w}{\partial x}$. Andrei Polyanin
Submitted: 11 Dec 06 14:52
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin