MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
111 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
$\displaystyle \left[g(w)\frac{\partial w}{\partial y}+f(y)\right]\frac{\partial^2 w}{\partial x\partial y}
-\left[g(w)\frac{\partial w}{\partial x}-h(x)\right]\frac{\partial^2 w}{\partial y^2}=0$,\hfill\break Valentin Feodorovich Zaitsev
Submitted: 02 Jul 07 08:39
Details
Edit
112 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial w}{\partial y }\frac{\partial^2 w}{\partial t \, \partial x}  = \frac{\partial w}{\partial t}  \frac{\partial^2 w}{\partial x \,\partial y}$ Yurii Kosovtsov
Submitted: 02 Jul 07 10:11
Edited (admin): 03 Jul 07 16:20
Details
Edit
113 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle w\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial t \, \partial y}-
w\frac{\partial w}{\partial t}\frac{\partial^2 w}{\partial y ^2}-
a\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial y ^2}+
a\frac{\partial w}{\partial y}\frac{\partial^2w}{\partial x\partial y}+
\frac{\partial w}{\partial t}\left(\frac{\partial w}{\partial y}\right)^2=0$. Yurii Kosovtsov
Submitted: 04 Jul 07 13:43
Edited (admin): 06 Jul 07 10:35
Details
Edit
114 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle a\left (\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial x \, \partial z}- \frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial z ^2}\right) 
+b \left (\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial y \, \partial z}- \frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial z ^2}\right)\\
+w\left (\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial t \, \partial z}- \frac{\partial w}{\partial t}\frac{\partial^2 w}{\partial z ^2}\right)+ \frac{\partial w}{\partial t}\left(\frac{\partial w}{\partial z}\right)^2=0$. Yurii Kosovtsov
Submitted: 07 Jul 07 10:08
Edited (admin): 08 Jul 07 12:02
Details
Edit
115 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle A(w)\left (\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial x \, \partial y}- \frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial x ^2}\right)+\frac{dA(w)}{dw}}\frac{\partial w}{\partial y }\left(\frac{\partial w}{\partial x}\right)^2\\
+B(w) \left(\frac{\partial w}{\partial t}+A(w) \frac{\partial w}{\partial y}\right) \left(\frac{\partial w}{\partial x}\right)^2+\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial t \, \partial x}
 -\frac{\partial w}{\partial t}\frac{\partial^2 w}{\partial x ^2}=0$. Yurii Kosovtsov
Submitted: 11 Jul 07 09:46
Details
Edit
116 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial w}{\partial x}\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial t \, \partial y} + \frac{\partial w}{\partial t}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial x \, \partial z}= \frac{\partial w}{\partial t}\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial x \, \partial y}+\frac{\partial w}{\partial x}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial t \, \partial z} $ Yurii Kosovtsov
Submitted: 03 Aug 07 07:45
Details
Edit
117 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \left(\frac{\partial w}{\partial y}\right )^2\frac{\partial^2 w}{\partial t \, \partial x} -\left(\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial t \, \partial y}   +\frac{\partial w}{\partial t}\frac{\partial^2 w}{\partial x \, \partial y}\right ) \frac{\partial w}{\partial y}+\frac{\partial w}{\partial t}\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial y^2} = a\left(\frac{\partial w}{\partial y}\right )^3 $ Yurii Kosovtsov
Submitted: 03 Aug 07 09:25
Details
Edit
118 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
\noindent
$\displaystyle \frac{\partial w}{\partial x}\frac{\partial w}{\partial z}\frac{\partial^2 w}{\partial t \, \partial y}  = \frac{\partial w}{\partial t}\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial x \, \partial z} $ Yurii Kosovtsov
Submitted: 01 Aug 07 10:29
Edited (author): 15 Aug 07 11:50
Edited (admin): 02 Aug 07 09:09
Details
Edit
119 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
$\displaystyle \left[yw\frac{\partial w}{\partial y}+\frac{w^2}{2}+f(y)\right]\frac{\partial^2 w}{\partial x\partial y}-
\left(yw-\frac{\partial w}{\partial x}\right)\frac{\partial^2 w}{\partial y^2}=0$,\hfill\break Valentin Feodorovich Zaitsev
Submitted: 13 Jul 07 07:33
Edited (author): 22 Aug 07 17:23
Edited (admin): 13 Jul 07 12:19
Details
Edit
120 4. Nonlinear Partial Differential Equations
4.2. Second-Order Quasilinear Hyperbolic Equations
$\displaystyle \left(y^2w\frac{\partial w}{\partial y}+
ax\right)\frac{\partial^2 w}{\partial x\partial y}-
y\left(yw\frac{\partial w}{\partial x}-a\right)\frac{\partial^2 w}{\partial y^2}=0$. Valentin Zaitsev
Submitted: 22 Aug 07 17:27
Edited (admin): 23 Aug 07 10:03
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin