MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>
 CategoryEquation(s)Author/
Contributor
Actions
31 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial x^2}+b\frac{\partial ^2w}{\partial y^2}-c^2w$. Valeriy Stepuchev
Submitted: 21 May 08 19:03
Edited (admin): 27 Jun 08 11:14
Details
Edit
32 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial
x^2}+b\frac{\partial ^2w}{\partial y^2}+q\frac{\partial
^2w}{\partial z^2}$. Valeriy Stepuchev
Submitted: 22 May 08 19:40
Edited (admin): 10 Jul 08 11:48
Details
Edit
33 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial
x^2}+b\frac{\partial ^2w}{\partial y^2}+q\frac{\partial
^2w}{\partial z^2}-c^2w$. Valeriy Stepuchev
Submitted: 22 May 08 19:48
Edited (admin): 10 Jul 08 11:55
Details
Edit
34 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=a\frac{\partial ^2w}{\partial
x^2}+b\frac{\partial ^2w}{\partial y^2}+q\frac{\partial
^2w}{\partial z^2}+c^2w$. Valeriy Stepuchev
Submitted: 22 May 08 19:54
Edited (admin): 10 Jul 08 12:18
Details
Edit
35 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial^2w}{\partial t^2}=b\frac{\partial ^2w}{\partial x^2}+c^2w$. Valeriy Germanovich Stepuchev
Submitted: 16 Mar 08 15:51
Edited (author): 28 Aug 08 14:44
Edited (admin): 21 Mar 08 13:27
Details
Edit
36 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle (at+x)\frac{\partial ^2w}{\partial t^2}=b\frac{\partial^2w}{\partial x^2}$. Valeriy Stepuchev
Submitted: 18 Jul 08 18:31
Edited (admin): 15 Sep 08 15:30
Details
Edit
37 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \biggl(\sum^m_{k=0}a_kx^k\biggr)\frac{\partial ^2w}{\partial t^2}=\frac{\partial^2w}{\partial x^2}$. Valeriy Stepuchev
Submitted: 31 Jul 08 20:04
Edited (admin): 19 Feb 09 11:47
Details
Edit
38 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial ^2w}{\partial t^2}=ax\frac{\partial^2w}{\partial x^2}+b
\frac{\partial w}{\partial x}$. Valeriy Stepuchev
Submitted: 04 Jun 08 20:36
Edited (author): 07 Oct 15 17:59
Edited (admin): 27 Jun 08 10:08
Details
Edit
39 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial ^2w}{\partial t^2}=a\frac{\partial^2w}{\partial
x^2}+\frac bx \frac{\partial w}{\partial x}$. Valeriy Stepuchev
Submitted: 04 Jul 08 19:43
Edited (author): 07 Oct 15 18:32
Edited (admin): 10 Jul 08 11:35
Details
Edit
40 3. Linear Partial Differential Equations
3.2. Second-Order Hyperbolic Equations
$\displaystyle \frac{\partial ^2w}{\partial t^2}=ax^q\frac{\partial^2w}{\partial
x^2}+bx^{q-1} \frac{\partial w}{\partial x}$, \quad \ $q\neq2$. Valeriy Stepuchev
Submitted: 08 Jul 08 18:42
Edited (author): 07 Oct 15 18:55
Edited (admin): 10 Jul 08 11:40
Details
Edit
Found 327 equations, 33 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin