|
EqWorld
The World of Mathematical Equations |
|
|
Exact Solutions > Basic Handbooks
Basic Handbooks on Exact Solutions for Mathematical Equations
- E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, I,
Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.
- G. M. Murphi, Ordinary Differential Equations and Their Solutions,
D. Van Nostrand, New York, 1960.
- A. D. Polyanin and V. F. Zaitsev,
Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition,
Chapman & Hall/CRC Press, Boca Raton, 2003
(see: Contents,
Foreword,
References,
Index).
- A. D. Polyanin,
Handbook of Linear Partial Differential Equations for Engineers and Scientists,
Chapman & Hall/CRC Press, Boca Raton, 2002
(see: Contents,
Foreword,
References,
Index).
- A. D. Polyanin and V. F. Zaitsev,
Handbook of Nonlinear Partial Differential Equations, 2nd Edition,
Chapman & Hall/CRC Press, Boca Raton, 2012
(see: Preface, Contents, Features, References).
- A. D. Polyanin and V. F. Zaitsev,
Handbook of Nonlinear Partial Differential Equations,
Chapman & Hall/CRC Press, Boca Raton, 2004
(see: Contents,
Foreword,
References,
Index).
- A. D. Polyanin and A. V. Manzhirov,
Handbook of Integral Equations, 2nd Edition,
Chapman & Hall/CRC Press, Boca Raton, 2008
(see: Contents,
Preface,
Index).
- E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, II,
Partielle Differentialgleichungen Erster Ordnung fur eine gesuchte Funktion,
Akad. Verlagsgesellschaft Geest & Portig, Leipzig, 1965.
- A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux,
Handbook of First Order Partial Differential Equations,
Taylor & Francis, London, 2002
(see: Contents,
Preface,
References,
Index).
- A. D. Polyanin and A. V. Manzhirov,
Handbook of Mathematics for Engineers and Scientists (Chapters 12–17, T5–T12),
Chapman & Hall/CRC Press, Boca Raton–London, 2006
(see: Contents,
Preface,
Features,
Index).
|
|
|
The EqWorld website presents extensive information on solutions to
various classes of ordinary differential equations, partial differential
equations, integral equations, functional equations, and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|