EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Ordinary Differential Equations > Second-Order Nonlinear Ordinary Differential Equations

PDF version of this page

3. Second-Order Nonlinear Ordinary Differential Equations

3.1. Ordinary Differential Equations of the Form y′′ = f(x, y)

  1. y′′ = f(y).    Autonomous equation.
  2. y′′ = Axnym.    Emden--Fowler equation.
  3. y′′ + f(x)y = ay−3.    Ermakov (Yermakov) equation.
  4. y′′ = f(ay + bx + c).
  5. y′′ = f(y + ax2 + bx + c).
  6. y′′ = x−1f(yx−1).    Homogeneous equation.
  7. y′′ = x−3f(yx−1).
  8. y′′ = x−3/2f(yx−1/2).
  9. y′′ = xk−2f(x−ky).    Generalized homogeneous equation.
  10. y′′ = yx−2f(xnym).    Generalized homogeneous equation.
  11. y′′ = y−3f(y(ax2 + bx + c)−1/2).
  12. y′′ = e−axf(eaxy).
  13. y′′ = yf(eaxym).
  14. y′′ = x−2f(xneay).
  15. y′′ = (ψ′′/ψ)y + ψ−3f(y/ψ),    ψ = ψ(x).

3.2. Ordinary Differential Equations of the Form f(x, y)y′′ = g(x, y, y′)

  1. y′′ − y′ = f(y).    Autonomous equation.
  2. y′′ + f(y)y′ + g(y) = 0.    Lienard equation.
  3. y′′ + [ay + f(x)]y′ + f′(x)y = 0.
  4. y′′ + [2ay + f(x)]y′ + af(x)y2 = g(x).
  5. y′′ = ay′ + e2axf(y).
  6. y′′ = f(y)y′.
  7. y′′ = [eαxf(y) + α]y′.
  8. xy′′ = ny′ + x2n + 1f(y).
  9. xy′′ = f(y)y′.
  10. xy′′ = [xkf(y) + k − 1]y′.
  11. x2y′′ + xy′ = f(y).
  12. (ax2 + b)y′′ + axy′ + f(y) = 0.
  13. y′′ = f(y)y′ + g(x).
  14. xy′′ + (n + 1)y′ = xn − 1f(yxn).
  15. g(x)y′′ + 1/2 g′(x)y′ = f(y).
  16. y′′ = −ay′ + eaxf(yeax).
  17. xy′′ = f(xneay)y′.
  18. x2y′′ + xy′ = f(xneay).
  19. yy′′ + (y′)2 + f(x)yy′ + g(x) = 0.
  20. yy′′ − (y′)2 + f(x)yy′ + g(x)y2 = 0.
  21. yy′′ − n(y′)2 + f(x)y2 + ay4n − 2 = 0.
  22. yy′′ − n(y′)2 + f(x)y2 + g(x)yn + 1 = 0.
  23. yy′′ + a(y′)2 + f(x)yy′ + g(x)y2 = 0.
  24. yy′′ = f(x)(y′)2.
  25. y′′ − a(y′)2 + f(x)eay + g(x) = 0.
  26. y′′ − a(y′)2 + be4ay + f(x) = 0.
  27. y′′ + a(y′)2 − 1/2 y′ = exf(y).
  28. y′′ + α(y′)2 = [eβxf(y) + β]y′.
  29. y′′ + f(y)(y′)2 + g(y) = 0.
  30. y′′ + f(y)(y′)2 − 1/2 y′ = exg(y).
  31. y′′ = xf(y)(y′)3.
  32. y′′ = f(y)(y′)2 + g(x)y′.
  33. y′′ = f(x)g(xy′ − y).
  34. y′′ = yx−2f(xy′/y).
  35. gy′′ + 1/2 g′y′ = f(y)h(y′g1/2),   g = g(x).
  36. y′′ = f((y′)2 + ay).

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin