[1] Zabusky N.J., Kruskal M.D. Ineraction of ”Solitons” in a collisioness plasma and the recurrence of initial states. Phys Rev Lett 1965; 15: 240-3
[2] Gardner C.S., Green J.M., Kruskal M.D., and Miura R. M. Method for solving the Korteweg-de Vries equations. Phys Rev Lett 1967; 19: 1095 - 97
[3] Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Communications on pure and applied mathematics 1968; 21: 467 - 90
[4] Ablowitz M.J., Kaup D. J., Newell A. C., Segur H. The Inverse Scattering Transform - Fourier Analysis for Nonlinear Problems Stud. Appl Math 1974; 53: 249 - 315.
[5] Ablowitz M.J. and Clarkson P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge university press, 1991
[6] Hirota R. Exact solution of the Korteweg-de Vries for multiple collinsions of solutions. Phys Rev Lett 1971; 27: 1192 - 94
[7] Kudryashov N.A. Analitical theory of nonlinear differential equations. Moskow - Igevsk. Institute of computer investigations: 2004 [in Russian]
[8] Polyanin A.D., Zaitsev V.F., Zhyrov A.I. Methods of nonlinear equations of mathematical physics and mechanics. Moscow. Fizmatlit: 2005
[9] Weiss J., Tabor M., Carnevalle G. The Painleve property for partial differential equations. J Math Phys 1983; 24:522-26
[10] Weiss J. The Painleve property for partial differential equations. II: Backlund transformation, Lax pairs, and the Schwarzian derivative. J Math Phys 1983; 24:1405-13
[11] Conte R. The Painleve property, one century later, CRM series in mathematical physics, New York: Springer – Verlag; 1999. p. 77 - 180
[12] Kudryashov N.A. Exact soliton solutions of the generalized evolution equation of wave dynamics. Journal of Applied Mathematics and Mechanics 1988; 52(3):360-5
[13] Conte R., Musette M. Painlevé analysis and Backlund transformations in the Kuramoto - Sivashinsky equation. Journal of Physics A.: Math Gen 1989; 22:169-77
[14] Kudryashov N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys Lett A 1990; 147:287-91
[15] Kudryashov N.A. Exact soliton solutions of nonlinear wave equations arising in mechanics. Journal of Applied Mathematics and Mechanics 1990; 54(3):450-53
[16] Kudryashov N.A., On types of nonlinear nonintegrable equations with exact solutions Phys Lett A 1991; 155:269-75
[17] Kudryashov N.A. Partial differential equations with solutions having movable first - order singularities. Physics Letters A 1992; 169:237-42
[18] Kudryashov N.A., Truncated expansions and nonlinear integrable partial differential equations. Physics Letters A 1993; 178:99-104
[19] Kudryashov N.A. From singular manifold equations to integrable evolution equations. J Phys A Math Gen 1994; 27:2457-70
[20] Kudryashov N.A., Zargaryan E.D., Solitary waves in active-dissipative dispersive media. J Phys A Math Gen 1996;29:8067-77
[21] Peng Y.Z., Krishnan E.V. The singular manifold method and exact periodic wave solutions to a restricted BLP dispersive long wave system. Reports on mathematical physics 2005; 56:367 - 78
[22] Kudryashov N.A., Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons and Fractals 2005; 24:1217-31
[23] Kudryashov N.A. Exact solitary waves of the Fisher equations. Physics Letters A 2005; 342:99-106
[24] Kudryashov N.A., Demina M.V. Polygons of differential equation for finding exact solutions. Chaos Solitons and Fractals 2007; 33:1480-96
[25] Kudryashov N.A. Solitary and Periodic Solutions of the Generalized Kuramoto -Sivashinsky Equation. Regular and Chaotic Dynamics 2008, 13:234-38
[26] Kudryashov N.A., Loguinova N.B. Extended simplest equation method for nonlinear differential equations. Applied Mathematics and Computation 2008; 205:396-402
[27] Lan H., Wang K. Exact solutions for some nonlinear equations. Physics Letters A 1989; 137: 369-73
[28] Lou S.Y.,Huang G.X., Ruan H.Y. Exact solitary waves in a convecting fluid. J Phys A Math Gen 1991; 24(11):L587-L590
[29] Malfliet W., Hereman W. The Tanh method: I Exact solutions of nonlinear evolution and wave equations. Phys Scripta 1996; 54:563-68
[30] Parkes E.J., Duffy B.R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput Phys Commun 1996; 98:288-300
[31] Wang M.L., Li X., Zhang J. The - expansion method and evolution erquations in mathematical physics. Phys Lett A 2008; 372(4):417
[32] Bekir A., Application of the - expansion method for nonlinear evolution equations. Phys Lett A 2008; 3400-06
[33] Zhang J., Wei X., Lu Y. A generalized - expansion method and its applicatioons, Phys. Lett. A 2008; 372:3653-58
[34] Wazwaz A. M. The tanh - coth method for solitons and kink solutions for nonlinear parabolic equations. Appl Math Comput 2007; 188:1467-75
[35] Abdou M. A. The extended tanh method and its applications for solving nonlinear physical models. Appl Math Comput 2007; 199:988-96
[36] Wazzan L. A modified tanh - coth method for solving the general Burgers - Fisher and the Kuramoto - Sivashinsky equations. Commun Nonlinear Sci Numer Simulat, (2008), doi: 10.1016/j.cnsns.2008.08.004.
[37] He J.H., Wu X.H. Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 2006; 30:700 - 08
[38] He J.H., Abdou M.A. New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons and Fractals 2007; 34:1421 - 29
[39] Wu X.H., He J.H. Solitary solutions, peridic solutions and compaction - like solutions using the Exp-function method. Comput Math Appl 2007; 54:966 - 86
[40] Ebaid A. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method. Phys Lett A 2007; 365:213 - 19
[41] El - wakil S.A., Madkour M.A., Abdou M.A. Application of the Exp-function method for nonlinear evolution equations with variable coefficients. Phys Lett A 2007; 369:62 - 9
[42] Kudryashov N.A., Loguinova N.B. Be carefull with the Exp - function method. Commun Nonlinear Sci Numer Simulat 2009; 14:1881 - 90
[43] Li W., Zhang H. Generalized multiple Riccati equations rational expansion method with symbolic computation to construct exact complexiton solutions of nonlinear partial differential equations. Appl Math Comput 2008; 197: 288 - 96
[44] Zhang S. Application of the Exp - function method to high - dimensional nonlinear evolution equation. Chaos, Solitons and Fractals 2008; 38:270 - 76
[45] Korteweg D.J., de Vries G. On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves. Phil Mag 1895; 39:422-43
[46] Kudryashov N.A. , On ”new travelave solutions” of the KdV and the KdV - Burgers equations. Commun Nonlinear Sci Numer Simulat 2009; 14:1891-1900
[47] Khani F. Analytic study on the higher order Ito equations: New solitary wave solutions using the Exp - function method. Chaos, Solitons and Fractals 2008; doi: 10.1016/j.chaos.2008.08.023
[48] Öziş T., Aslan I., Exact and explicit solutions to the (3+1) - dimensional Jimbo - Miva equation via the Exp - function method. Phys Lett A 2008; 372:7011 - 15
[49] Ganji Z.Z., Ganji D.D., Bararnia H. Approximate general and explicit solutions of nonlinear BBMB equations by Exp - function method. Applied Mathematical Modeling, 2008; doi: 10.1016/j.apm.2008.03.005
[50] Erbas B., Yusufoǧlu E., Exp - function method for constructing exact solutions of Sharma - Tasso - Olver equation. Chaos, Solitons and Fractals 2008; doi: 10.1016/j.chaos.2008.09.003
[51] Soliman A.A., Exact solutions of the KdV - Burgers equation by Exp-function method. Chaos, Solitons and Fractals, 2008; doi: 10.1016/J.chaos. 2008.04.038
[52] Cole J.D. On a quasilinear parabolic equation occurring in aerodynamics. Quart Appl Math 1951 9:225 - 36
[53] Hopf E. The partial differential equation . Commun Pure AppL Math 1950; 13: 201 - 30
[54] Abdou M.A. Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp - function method. Nonlinear Dynamics 2008: 52: 1-9, doi 10.1007/s1071-007-9250-1
[55] Wazwaz A.M. Multiple - soliton solutions for the generalized (1+1) - dimensional and the generalized (2+1) - dimensional Ito equations. Applied Mathematics and Computation 2008; 202: 840 - 49
[56] Clarkson P.A., Kruskal M.D. New similarity reductions of the Boussinesq equation. J Math Phys 1989; 30:2201 - 13
[57] Ugurlu Y., Kaya D. Solutions of the Cahn - Hillard equation. Computers and Mathematics with Applications 2008; doi:10.1016/j.camwa.2008.07.007
[58] Bekir A. On travelling wave solutions to combined KdV - mKdV and modified Burgers - KdV equation, Commun Nonlinear Sci Numer Simulat 2009 14:1038 - 42
[59] Bekir A., Applications of the extended tanh method for coupled nonlinear evolution equations. Commun Nonlinear Sci Numer Simulat 2008; 13:1748 - 57
[60] Xie F., Zhang Y., Lü Z. Symbolic computation in nonlinear evolution equation: application to (3+1) - dimensional Kadomttsev - Petviasvili equation. Chaos, Solitons and Fractals 2005; 24: 257 - 63
[61] Zhang S.Symbolic computation and new families of exact non-travelling wave solutions of (2+1) - dimensional Konopelchenko - Dubrovsky equations. Chaos, Solitons and fractals 2007; 31:951 - 59
[62] Wazwaz A.M. New solitons and kinks solutions to the Sharma - Tasso - Olver equation. Applied Mathematics and Computation 2007; 188:1205 - 13
[63] Yusufoǧlu E. New solitary solutions for the MBBM equations using Exp-function method. Physics Letters A 2008; 372:442 - 46
[64] Chun C., Soliton and periodic solutions for the fifth-order KDV equation with the Exp - function method, Physics Letters A 2008; 372: 2760 - 66
[65] Abdou M.A., Soliman A.A., El-Basony S.T., New application of Exp - function method for improved Boussinesq equation. Physics Letters A 2007; 369:469 - 75
[66] Bekir A., Cevikel A.C. Solitary wave solutions of two nonlinear physical models by tanh - coth method. Commun Nonlinear Sci Numer Simulat 2009; 14: 1804 - 09
[67] Öziş T., Köroǧlu C., A novel approach for solving the Fisher equation using Exp-function method. Physics Letters A 2008; 372: 3836 - 3840
[68] Chun C. Application of Exp-function method to the generalized Burgers - Huxley equation. Journal of Physics: Conference Series 2008; 96:012217
[69] Efimova O.Yu., Kudryashov N.A. Exact solutions of the Burgers - Huxley equation. Journal of Applied Mathematics and Mechanics 2004; 68(3):413 - 20
[70] El - Wakil S.A., Abdou M.A., Hendi A. New periodic wave solutions via Exp-function method. Phys Lett A 2008; 372:830 - 40
[71] Zhang S. Exp-function method for Klein-Gordon equation with quadratic nonlinearity. J. Phys: Conference Series 2008; 96: 012002
[72] Noor M.A., Mohyud-Din S.T., Waheed A., Exp-function method for solving Kuramoto—Sivashinsky and Boussinesq equations. J Appl Math Comput 2008; doi: 10.1007/s12190-008-0083-y.
[73] Kuramoto Y., Tsuzuki T. Persistent Propagation of concentration waves in Dissipative media far from thermal equalibrium. Progress of theoretical Physics 1976; 55(2):356 - 69
[74] Wazwaz A.M. New solitary wave solutions to the Kuramoto—Sivashinsky and the Kawahara equations. Applied Mathematics and Computation 2006; 182:164250.
[75] Chen H., Zhang H. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto - Sivashinsky equation. Chaos, Solitons and Fractals 2004; 19:71 6.
[76] Dai C.Q., Wang Y.Y. New exact solutions of the (3+1) - dimensional Burgers system. Physics Letters A 2008; doi:10.1016/j.physleta.2008.11.018
The EqWorld website presents extensive information on solutions to
various classes of ordinary differential equations, partial differential
equations, integral equations, functional equations, and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin