EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Integral Equations > Volterra Integral Equations of the First Kind and Related Linear Integral Equations with Variable Limit of Integration

PDF version of this page

1. Volterra Integral Equations of the First Kind

1-1. Integral equations with kernels involving power-law functions

  1. (xt) y(t) dt = f(x).
  2. (Ax + Bt + C) y(t) dt = f(x).
  3. (xt)n y(t) dt = f(x),     n = 1, 2, ...
  4. (xt)1/2 y(t) dt = f(x).
  5. (xt)−1/2 y(t) dt = f(x).     Abel equation.
  6. (xt)λ y(t) dt = f(x),     0 < λ < 1.
  7. (xt)−λ y(t) dt = f(x),     0 < λ < 1.     Generalized Abel equation.

1-2. Integral equations with kernels involving exponential functions

  1. eλ(xt) y(t) dt = f(x).
  2. eλxt y(t) dt = f(x).
  3. [eλ(xt) − 1] y(t) dt = f(x).
  4. [eλ(xt) + b] y(t) dt = f(x).
  5. [eλ(xt)eμ(xt)] y(t) dt = f(x).
  6. (eλxeλt)−1/2 y(t) dt = f(x).

1-3. Integral equations with kernels involving hyperbolic functions

  1. cosh[λ(x − t)] y(t) dt = f(x).
  2. {cosh[λ(x − t)] − 1} y(t) dt = f(x).
  3. {cosh[λ(x − t)] + b} y(t) dt = f(x).
  4. cosh2[λ(x − t)] y(t) dt = f(x).
  5. sinh[λ(x − t)] y(t) dt = f(x).
  6. {sinh[λ(x − t)] + b} y(t) dt = f(x).
  7. sinh[λ(x − t)1/2] y(t) dt = f(x).

1-4. Integral equations with kernels involving logarithmic functions

  1. ln(x − t) y(t) dt = f(x).
  2. [ln(x − t) + A] y(t) dt = f(x).
  3. (x − t)[ln(x − t) + A] y(t) dt = f(x).

1-5. Integral equations with kernels involving trigonometric functions

  1. cos[λ(x − t)] y(t) dt = f(x).
  2. {cos[λ(x − t)] − 1} y(t) dt = f(x).
  3. {cos[λ(x − t)] + b} y(t) dt = f(x).
  4. sin[λ(x − t)] y(t) dt = f(x).
  5. sin[λ(x − t)1/2] y(t) dt = f(x).

1-6. Integral equations with kernels involving special functions

  1. J0(λ(x − t)) y(t) dt = f(x).
  2. J0(λ(x − t)1/2) y(t) dt = f(x).
  3. I0(λ(x − t)) y(t) dt = f(x).
  4. I0(λ(x − t)1/2) y(t) dt = f(x).

10-7. Integral equations with kernels involving arbitrary functions

  1. [g(x) − g(t)] y(t) dt = f(x).
  2. [g(x) − g(t) + b] y(t) dt = f(x).
  3. [g(x) + h(t)] y(t) dt = f(x).
  4. K(x − t) y(t) dt = f(x).
  5. [g(x) − g(t)]1/2 y(t) dt = f(x).
  6. [g(x) − g(t)]−1/2 y(t) dt = f(x).

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin