|
EqWorld
The World of Mathematical Equations |
|
Exact Solutions >
Systems of Partial Differential Equations >
Nonlinear Systems of Two Parabolic Equations (Reaction-Diffusion Equations)
PDF version of this page
2. Nonlinear Systems of Two Parabolic Equations
2.1. Reaction-Diffusion Systems of the Form
ut = auxx + F(u, w),
wt = bwxx + G(u, w)
Preliminary comments.
Similar systems of equations are frequent in the theory of heat and mass
transfer of reacting media, the theory of chemical reactors, combustion
theory, mathematical biology, and biophysics.
Systems of this form are invariant under translations in independent
variables (and under the change of x to
− x) and admit traveling-wave
solutions, u = u(kx − λt) and
w = w(kx − λt).
These solutions and also degenerate solutions where one of the sought functions is zero
are not considered further on.
The functions f(φ), g(φ),
and h(φ) appearing below
are arbitrary functions of an argument φ = φ(u, w);
the equations are arranged in order of complicating this argument.
-
ut = auxx + u exp(kw/u)f(u),
wt = awxx + exp(kw/u)[wf(u) + g(u)].
-
ut = auxx + uf(bu − cw) + g(bu − cw),
wt = awxx + wf(bu − cw) + h(bu − cw).
-
ut = auxx + eλuf(λu − σw),
wt = bwxx + eσwg(λu − σw).
-
ut = auxx + uf(u/w),
wt = awxx + wg(u/w).
-
ut = auxx + uf(u/w),
wt = bwxx + wg(u/w).
-
ut = auxx + uf(u/w) + g(u/w),
wt = awxx + wf(u/w) + h(u/w).
-
ut = auxx + uf(u/w) + u/w h(u/w),
wt = awxx + wg(u/w) + h(u/w).
-
ut = auxx + u3f(u/w),
wt = awxx + u3g(u/w).
-
ut = uxx + au − u3f(u/w),
wt = wxx + aw − u3g(u/w).
-
ut = auxx + unf(u/w),
wt = bwxx + wng(u/w).
-
ut = auxx + uf(u/w) ln u + ug(u/w),
wt = awxx + wf(u/w) ln w + wh(u/w).
-
ut = auxx + uf(w/u) − wg(w/u) + u(u2 + w2)−1/2h(w/u),
wt = awxx + wf(w/u) + ug(w/u) + w(u2 + w2)−1/2h(w/u).
-
ut = auxx + uf(w/u) + wg(w/u) + u(u2 − w2)−1/2h(w/u),
wt = awxx + wf(w/u) + ug(w/u) + w(u2 − w2)−1/2h(w/u).
-
ut = auxx + uf(unwm),
wt = bwxx + wg(unwm).
-
ut = auxx + u1 + knf(unwm),
wt = bwxx + w1 − kmg(unwm).
-
ut = auxx + cu ln u + uf(unwm),
wt = bwxx + cw ln w + wg(unwm).
-
ut = auxx + uf(u2 + w2) − wg(u2 + w2),
wt = awxx + wf(u2 + w2) + ug(u2 + w2).
-
ut = auxx + uf(u2 − w2) + wg(u2 − w2),
wt = awxx + wf(u2 − w2) + ug(u2 − w2).
-
ut = auxx + uf(u2 + w2) − wg(u2 + w2) − w arctan(w/u)h(u2 + w2),
wt = awxx + wf(u2 + w2) + ug(u2 + w2) + u arctan(w/u)h(u2 + w2).
-
ut = auxx + uf(u2 − w2) + wg(u2 − w2) + w artanh(w/u)h(u2 − w2),
wt = awxx + wf(u2 − w2) + ug(u2 − w2) + u artanh(w/u)h(u2 − w2).
-
ut = auxx + uk + 1f(φ),
wt = awxx + uk + 1[f(φ) ln u + g(φ)],
φ = u exp(−w/u).
-
ut = auxx + uf(u2 + w2) − wg(w/u),
wt = awxx + ug(w/u) + wf(u2 + w2).
-
ut = auxx + uf(u2 − w2) + wg(w/u),
wt = awxx + ug(w/u) + wf(u2 − w2).
-
ut = auxx + uf(u2 + w2, w/u) − wg(w/u),
wt = awxx + wf(u2 + w2, w/u) + ug(w/u).
-
ut = auxx + uf(u2 − w2, w/u) + wg(w/u),
wt = awxx + wf(u2 − w2, w/u) + ug(w/u).
-
ut = auxx + F(u, w),
wt = awxx + bF(u, w).
-
ut = auxx + uf(bu − cw) + g(bu − cw) + cΦ(u, w),
wt = awxx + wf(bu − cw) + h(bu − cw) + bΦ(u, w).
2.2. Reaction-Diffusion Systems of the Form
ut = ax− n(xnux)x + F(u, w),
wt = bx− n(xnwx)x + G(u, w)
Preliminary comments.
Similar systems of equations are frequent in the theory of heat and mass
transfer of reacting media, the theory of chemical reactors, combustion
theory, mathematical biology, and biophysics. The values n = 1 and n = 2
correspond to equations with axial and central symmetry, respectively.
The functions f(φ), g(φ),
and h(φ) appearing below
are arbitrary functions of an argument φ = φ(u, w);
the equations are arranged in order of complicating this argument.
-
ut = ax−n(xnux)x + uf(bu − cw) + g(bu − cw),
wt = ax−n(xnwx)x + wf(bu − cw) + h(bu − cw).
-
ut = ax−n(xnux)x + eλuf(λu − σw),
wt = bx−n(xnwx)x + eσwg(λu − σw).
-
ut = ax−n(xnux)x + uf(u/w),
wt = ax−n(xnwx)x + wg(u/w).
-
ut = ax−n(xnux)x + uf(u/w),
wt = bx−n(xnwx)x + wg(u/w).
-
ut = ax−n(xnux)x + uf(u/w) + u/w h(u/w),
wt = ax−n(xnwx)x + wg(u/w) + h(u/w).
-
ut = ax−n(xnux)x + ukf(u/w),
wt = bx−n(xnwx)x + wkg(u/w).
-
ut = ax−n(xnux)x + uf(u/w) ln u + ug(u/w),
wt = ax−n(xnwx)x + wf(u/w) ln w + wh(u/w).
-
ut = ax−n(xnux)x + uf(x, ukwm),
wt = bx−n(xnwx)x + wg(x, ukwm).
-
ut = ax−n(xnux)x + u1 + knf(unwm),
wt = bx−n(xnwx)x + w1 − kmg(unwm).
-
ut = ax−n(xnux)x + cu ln u + uf(x, ukwm),
wt = bx−n(xnwx)x + cw ln w + wg(x, ukwm).
-
ut = ax−n(xnux)x + uf(u2 + w2) − wg(u2 + w2),
wt = ax−n(xnwx)x + wf(u2 + w2) + ug(u2 + w2).
-
ut = ax−n(xnux)x + uf(u2 − w2) + wg(u2 − w2),
wt = ax−n(xnwx)x + wf(u2 − w2) + ug(u2 − w2).
-
ut = ax−n(xnux)x + uf(u2 + w2) − wg(w/u),
wt = ax−n(xnwx)x + wf(u2 + w2) + ug(w/u).
-
ut = ax−n(xnux)x + uf(u2 − w2) + wg(w/u),
wt = ax−n(xnwx)x + wf(u2 − w2) + ug(w/u).
2.3. Other Systems
-
ut = [f(t, u/w)ux]x + ug(t, u/w),
wt = [f(t, u/w)wx]x + wh(t, u/w).
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|